翻訳と辞書 |
Compactly embedded : ウィキペディア英語版 | Compactly embedded In mathematics, the notion of being compactly embedded expresses the idea that one set or space is "well contained" inside another. There are versions of this concept appropriate to general topology and functional analysis. ==Definition (topological spaces)==
Let (''X'', ''T'') be a topological space, and let ''V'' and ''W'' be subsets of ''X''. We say that ''V'' is compactly embedded in ''W'', and write ''V'' ⊂⊂ ''W'', if * ''V'' ⊆ Cl(''V'') ⊆ Int(''W''), where Cl(''V'') denotes the closure of ''V'', and Int(''W'') denotes the interior of ''W''; and * Cl(''V'') is compact.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Compactly embedded」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|